Natural Acetylenes. Part XLIII. ${ }^{1}$ Polyacetylenes from Cultures of the Fungus Fistulina pallida (Berk. and Rev.) ${ }^{2}$

By Mahtabuddin Ahmed, George C. Barley, Milton T. W. Hearn, Sir Ewart R. H. Jones, ${ }^{*}$ Viktor Thaller, and Judith A. Yates, The Dyson Perrins Laboratory, Oxford University, Oxford OX1 30Y

The new polyacetylenes $(2 \mathrm{~S})-\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{2} \cdot\left[\mathrm{C} \equiv \mathrm{C}_{3} \cdot \mathrm{CH} \stackrel{t}{=} \mathrm{CH} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right.$, its glucoside and 3-phenyl-lactate and $\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot\left[\mathrm{C} \equiv \mathrm{C}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}_{2} \mathrm{H}\right.$, as well as the known acids $\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot[\mathrm{C} \equiv \mathrm{C}]_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}_{2} \mathrm{H}$, $\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot\left[\mathrm{C} \equiv \mathrm{C}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}_{2} \mathrm{H}\right.$, and $(2 R)-\mathrm{PhCH}_{2} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CO}_{2} \mathrm{H}$ have been detected in extracts from the culture fluids of F. pallida. The natural C_{13} diol and its cis-isomer have been synthesised from 2,3-O-iso-propylidene-D-glyceraldehyde.

The fungus Fistulina hepatica (Hudson) Fr. was found to produce polyacetylenes both in mycelial cultures ${ }^{3}$ and in fruiting bodies in the field. ${ }^{4}$ The C_{13} tetrayne tetraol (I) was the major polyacetylene of the culture fluid but it was not detected in the arboreal sporophores in the mixture of unidentified neutral polyacetylenes and several C_{10} acids which were found to be present. We now describe the analysis of another member of the genus, F. pallida (Berk. and Rev.). The fungus was grown in surface cultures and produced neutral and acidic polyacetylenes: the presence of the C_{13} triynene diol (II), its glucoside (IV) and phenyl-lactate (III), the $\mathrm{C}_{\mathbf{1 0}}$ diynene acids ($\mathrm{V} ; \mathrm{R}=\mathrm{H}$) and ($\mathrm{VI} ; \mathrm{R}=\mathrm{H}$), and the C_{9} diynene acid (VII; R=H) was established. Another diynene acid, probably the cis-acid (VIII; $\mathrm{R}=\mathrm{H}$), was not characterised. (2R)-3-Phenyl-lactic acid (IX; $\mathrm{R}=$ $H)$ was the major non-polyacetylenic acid present in the extract.

The main polyacetylene, the crystalline triynene diol (II) was isolated in quantities of $1.5 \mathrm{mg} \mathrm{l}^{-1}$ of culture fluid. It gave the acetonide (X), and on periodate cleavage formaldehyde and the triynene aldehyde (XI) which, in turn, was reduced by sodium borohydride to the triynene alcohol (XII). These transformations and the associated spectral changes permitted unambiguous allocations of structures. Those of the natural product (II) and its acetonide (X) were confirmed by synthesis which was carried out to establish the stereochemistry at $\mathrm{C}(2)$ (see below).

Also present in the neutral fraction were small amounts of less and more polar polyacetylenes (mainly triynenes) which could not be isolated without deterioration of the chromophore. A complex, more polar triynene fraction, with spectral features similar to those of the diol (II), was separated but attempts at simple modification of the functionality resulted in decomposition. On chromatography or in the crystalline matrix the diol (II) itself undergoes gradual decomposition to more polar materials. A variety of alcohol-protecting methods were investigated to circumvent these isolation and handling difficulties. The most successful involved

[^0]conversion of the crude hydroxylic neutrals into their O-dimethyl-t-butylsilyl derivatives (with chlorodimethyl-t-butylsilane-dichloromethane). The use of this protecting group, ${ }^{5}$ which is considerably more inert to hydrolysis
\[

$$
\begin{align*}
& \text { (III) } \mathrm{R}=\mathrm{PhCH}_{2} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CO} \\
& \text { (IV) } \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{5} \\
& \mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}^{\mathrm{c}}=\mathrm{CH} \cdot[\mathrm{C}=\mathrm{C}]_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}_{2} \mathrm{R} \tag{V}\\
& \mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}=\mathrm{CH} \cdot\left[\mathrm{C} \equiv \mathrm{C}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CO}_{2} \mathrm{R}\right. \tag{VI}\\
& \mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH} \stackrel{t}{=} \mathrm{CH} \cdot\left[\mathrm{C}=\mathrm{C}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{R}\right. \tag{VII}\\
& \mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}^{c}=\mathrm{CH} \cdot\left[\mathrm{C}=\mathrm{C}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{R}\right. \tag{VIII}\\
& \mathrm{Me}\left[\mathrm{CH}_{2}\right]_{2} \cdot\left[\mathrm{C}=\mathrm{C}_{3} \cdot \mathrm{CH} \stackrel{t}{=} \mathrm{CHR}\right. \\
& \text { (XI) } \mathrm{R}=\mathrm{CHO} \\
& \text { (XII) } \mathrm{R}=\mathrm{CH}_{2} \cdot \mathrm{OH}
\end{align*}
$$
\]

than the trimethylsilyl counterpart, permitted partial resolution of the minor components. From the nonpolar fraction the bis- O-silyl derivative of the diol (II)
${ }^{4}$ I. W. Farrell, J. W. Keeping, M. G. Pellatt, and V. Thaller, J.C.S. Perkin I, 1973, 2642.
${ }_{5}$ E. J. Corey and A. Venkateswarlu, J. Amer. Chem. Soc., 1972, 94, 6190.
was easily isolated and converted into the diol. The yield of the diol (II) obtained by this method was 2.5 times that obtained in the direct isolation procedure.

From more polar O-silyl derivative fractions small amounts of two further triynenes were obtained. Although these materials could not be isolated in a pure state, they appear to be the O-dimethyl-t-butylsilyl derivatives of a 3-phenyl-lactate (III) and a glucoside (IV) of the diol (II). The presence of phenyl-lactic acid and glucose was confirmed by comparing the products obtained on mild hydrolysis with authentic specimens. The site of the linkage in either the ester or the glucoside could not be determined with the available material. An enetriynene-containing fraction was also obtained but again, scarcity of material prevented identification.

Only diynene u.v. absorption was recognisable in the esterified acid fraction. On repeated chromatography of the complex methyl ester mixture the presence of the C_{10} esters (V; R=Me) and (VI; $\mathrm{R}=\mathrm{Me}$) and the C_{9} ester (VII; $\mathrm{R}=\mathrm{Me}$) was ascertained. Two more polar diynenes were also detected, one of them being possibly the C_{9} ester (VIII; $\mathrm{R}=\mathrm{Me}$). The natural trans-esters were identical with synthetic specimens prepared for comparison by esterification of the products of Chodkiewicz coupling between 5 -bromopent-trans-2-en4 -yn-1-ol and pent-4-ynoic acid and but-3-ynoic acid, respectively.

The C_{9} trans-ester (VII; $\mathrm{R}=\mathrm{Me}$) has been previously isolated from Poria selecta. ${ }^{6}$ The C_{10} cis-ester (V; $\mathrm{R}=$ Me) was isolated from the sporophores of F. hepatica. ${ }^{4}$ Reinvestigation of the polyacetylenic esters obtained from the fruiting bodies has now confirmed that, in common with F. pallida, both the cis- and trans $-\mathrm{C}_{10}$ esters are present.

Methyl (2R)-3-phenyl-lactate (IX; $\mathrm{R}=\mathrm{Me}$) was the main component of the ester mixture. The S-acid was previously isolated ${ }^{7}$ from culture broths of Exobasidium symploci and found to act as plant growth regulator (the R-enantiomer was inactive).

The route employed in the synthesis of the diol (II) is shown in the Scheme. 2,3-O-Isopropylidene-D-glyceraldehyde (XIV) and the ylide derived from the trimethylsilylphosphonium salt (XIII) gave the trimethylsilyl enyne acetonide (XV) in a cis-trans ratio of $5: 1$ at -78° and $1.25: 1$ at -40° [cf. the more favoured transdouble bond formation with other aldehydes reported by Corey ${ }^{8}$ and the selective cis-double bond formation in the skipped enyne synthesis from the corresponding butynyl salt (XVII) ${ }^{9}$]. The two isomers were separated by chromatography and the trans-enyne (XV) was converted into the trans-triynene acetonide (X) and the diol (II). The synthetic specimens and the natural diol and its acetonide were identical in all respects including the signs of the o.r.d. curves ($589-436 \mathrm{~nm}$): the natural diol (II) must thus have the ($2 S$)-configuration [cf. the opposite configuration at $\mathrm{C}(2)$ in the tetraol (I)].

6 R. E. Bew, R. C. Cambie, Sir Ewart R. H. Jones, and G. Lowe, J. Chem. Soc. (C), 1966, 135.
${ }^{7}$ S. Tamura and C. Chang, Agric. and Biol. Chem. (Japan), 1965, 29, 1061 (Chem. Abs., 1966, 64, 5352h).

The trans- and cis-dioxolans (XV) showed opposite trends in their o.r.d. curves in the visible spectrum, and the same was observed when the cis-dioxolans (XVI) and (X) were prepared. Inversion of rotation like that observed when the natural trans-diol (II) was converted into its acetonide (X) and vice versa did not occur on

Scheme Reagents: i, $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}-\left[\mathrm{CH}_{2}\right]_{4} \mathrm{O}$; ii, SiO_{2} chromatography; iii, $\mathrm{AgNO}_{3}-$ EtOH, $\mathrm{KCN} ; ~ i v, ~ \mathrm{CuCl}, \mathrm{EtNH}_{2}, \mathrm{NH}_{2} \cdot \mathrm{OH}, \mathrm{HCl}$, $\mathrm{Me}\left[\mathrm{CH}_{2}\right]_{2} \cdot[\mathrm{C} \equiv \mathrm{C}]_{2} \cdot \mathrm{Br} ; \quad$, $\mathrm{HCl}-\mathrm{EtOH}$
hydrolysis of the cis-dioxolan (X) to the parent cis-diol (II). It did occur, however, with both the trans- and cis-dioxolan (XV) on conversion into the parent diols (XVIII). The influence of double-bond stereochemistry in polyacetylenes on the optical rotatory power of allylic asymmetric centres is being further studied.

(XVII)
(XVIII)

In the n.m.r. spectrum the three dioxolan ring protons were differently shielded and gave rise to triplet- and double-doublet-like signals in the $\tau 5-6.8$ region. Spinspin decoupling experiments on the trans-dioxolan (XV) confirmed the expectation that the apparent coupling constants quoted are not of the first order but conceal much more complex spectra of the ABC type which have not been analysed.

[^1]
EXPERIMENTAL

Instruments used: u.v., Unicam SP 800; i.r., Unicam SP 1000 and Perkin-Elmer 257; n.m.r., Perkin-Elmer R10 and R14; mass spectra (direct insertion) Varian-MAT CH7 and A.E.I. MS9; specific rotations, Perkin-Elmer 141; m.p.s (corr.), Kofler hot-stage apparatus.

Solution chromatography: $\mathrm{SiO}_{2} \mathrm{H}$.B.L. M60 in columns and Merck $\mathrm{HF}_{254+366}$ and $\mathrm{PF}_{254+366}$ in 0.3 mm (t.l.c.) and 1 mm (p.l.c.) layers, respectively.

Petrol refers to light petroleum of b.p. $30-40^{\circ}$.
Growth and Extraction of Fistulina pallida (Berk. and Rev.) Cultures and General Work-up of Extracts.-The fungus was grown on 3% malt extract in surface cultures supported on glass wool. When maximum polyacetylene concentrations (estimated by u.v.) were reached ($40-45$ days), the medium was decanted and replaced by a 4% solution of glucose containing sodium acetate $(0 \cdot 2 \mathrm{~m})$. In this, maximum polyacetylene production occurred within $12-15$ days after reflooding; the reflood procedure was repeated until a decline in polyacetylene production was observed. The culture fluids and the glucose-acetate reflood fluids were each continuously extracted with $\mathrm{Et}_{2} \mathrm{O}(48 \mathrm{~h})$; the extracts were concentrated to $200-300 \mathrm{ml}$ and separated into neutral and acidic fractions $\left(\mathrm{NaHCO}_{3}\right)$; and the latter was esterified with $4 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in MeOH .

Neutral Fraction.-This exhibited strong triynene u.v. absorption. T.l.c. of the culture fluid extract indicated a mixture of materials with one major component ($R_{F} 0 \cdot 4$; $\mathrm{Et}_{2} \mathrm{O}$, two elutions), whilst the reflood extract contained essentially one polyacetylene of similar polarity. In a typical isolation procedure the concentrated neutral material from the culture fluid of 30 flasks (660 mg) was separated on a SiO_{2} column (250 g) by stepwise elution (petrol- $\mathrm{Et}_{2} \mathrm{O}, 1: 1$, to $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}, 1: 1 ; 41$) and 100 ml fractions were collected. Fractions showing the same composition (t.l.c.) were combined and subjected to p.l.c. ($\mathrm{Et}_{2} \mathrm{O}$, multiple elutions, or EtOAc). Fractions 14-20 yielded thus on crystallisation ($\mathrm{Et}_{2} \mathrm{O}$-petrol) the major neutral component (2S)-tridec-trans-3-ene-5,7,9-triyne-1,2diol (II) (42 mg), m.p. 98-98.5 (reddens near 70°) (Found: C, $77 \cdot 2 ; \mathrm{H}, 7 \cdot 0 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 77 \cdot 3 ; \mathrm{H}$, $7.0 \%),[\alpha]^{20}-9.85(589 \mathrm{~nm}),-10 \cdot 7(578),-12 \cdot 1(546)$, and $-20.3^{\circ}(436)(c 0.5 \mathrm{in} \mathrm{EtOH}), \lambda_{\text {max. }}$ (EtOH) 331 ($\varepsilon 12,000$), $309(17,300), 290(12,900), 273^{\text {max }}(7300), 259(4200), 244$ (97,000), $233(59,000), 225 i n f l$, and $213(280,000) \mathrm{nm}, \nu_{\max }$ $\left(\mathrm{CHCl}_{3}\right) 3550$ and 3400 br (free and bonded OH), 2250 and $2130(\mathrm{C}=\mathrm{C})$, and 965 (trans $-\mathrm{CH}=\mathrm{CH}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 9 \cdot 00$ $\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 8.40(2 \mathrm{H}$, sextet, $J 7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right), 7 \cdot 72\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}=\mathrm{C}\right), 6.35(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 5 \cdot 64\left[1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{OH}) \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right], 4 \cdot 08$ $(1 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{C} H=\mathrm{CH})$, and $3.63(1 \mathrm{H}, \mathrm{dd}, J 16$ and $6 \mathrm{~Hz}, \mathrm{CH}-\mathrm{CH} \cdot \mathrm{CHO}), m / e 202\left(M^{+}, 4 \%\right), 172(28), 171(100)$, 152 (18), 140 (20), 128 (90), 115 (52), 101 (10), 87 (15), 75 (13), and 63 (10).

Subsequent more polar fractions contained material exhibiting mixed chromophores (most likely triynene, enetriynene, and tetrayne). The production of these materials which represented $c a .10 \%$ of the polyacetylene content was variable between growths and the components could not be separated without decomposition.

Silylation of the Diol (II) and the Neutral Fraction.-(a) The diol (II) (20 mg), chlorodimethyl-t-butylsilane (45 mg), and imidazole (34 mg) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ at 20° for 12 l . Filtration, washing of the filtrate $(0 \cdot 1 \mathrm{~N}-\mathrm{HCl}$; 50 ml), concentration, and p.1.c. (cyclohexane) of the residue
gave the liquid bis-O-silyl diol (II) (32 mg), $R_{\mathrm{F}} 0.90$ [Found: $m / e, 373 \cdot 202 . \quad \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{Si}_{2} \mathrm{O}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{Si}_{2} \mathrm{O}_{2}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ requires $m / e, 373 \cdot 2019]$, $\lambda_{\text {max. }}(\mathrm{EtOH}) 330 \cdot 5(\varepsilon 11,500), 309(16,300)$, $290(12,800), 273(8300), 258(6000), 245(105,000)$, and $232.5(64,000) \mathrm{nm}, v_{\text {max }}\left(\mathrm{CCl}_{4}\right) 2225$ and $2190(\mathrm{C}=\mathrm{C}), 1280$ ($\mathrm{O}-\mathrm{Si}$), and $955($ trans $-\mathrm{CH}=\mathrm{CH}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 9.95(12 \mathrm{H}, \mathrm{s}$, SiMe_{2}), $9 \cdot 15$ ($18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), $9.01\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right.$), $8.44\left(2 \mathrm{H}\right.$, sextet, $\left.J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right), 7.73(2 \mathrm{H}, \mathrm{t}, J 7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}=\mathrm{C}\right), 6.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \cdot \mathrm{OSi}\right), 5 \cdot 84(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH} \cdot \mathrm{OSi}), 4.30(1 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH})$, and $3.68(1 \mathrm{H}$, dd, $J 16$ and $4 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}-\mathrm{CH} \cdot \mathrm{CHO}), m / e 430\left(M^{+}, 2 \%\right)$, 415 (1), 387 (6), 373 (13), 331 (10), 323 (31), 299 (4), 289 (24), 285 (22), 234 (13), 201 (6), 147 (95), 133 (28), 117 (100), and 115 (15).
(b) The concentrated neutral fraction from 30 flasks (710 mg ; estimated by u.v. to contain $c a .320 \mathrm{mg}$ of polyacetylenes) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ was added to chlorodimethyl-tbutylsilane [$600 \mathrm{mg}, c a .2 .5 \mathrm{mmol}$. equiv. based on the diol (II)] and imidazole (680 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ cooled to 0°. After 24 h , the mixture was washed with $0 \cdot 1 \mathrm{~N}-\mathrm{HCl}(50 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}$, and concentrated, and the residue (900 mg) was separated by p.l.c. (cyclohexane) into seven bands. Each band was repeatedly rechromatographed on SiO_{2} or $\mathrm{SiO}_{2}-$ AgNO_{3} plates. The major band ($R_{\mathrm{F}} 0.90$) yielded the bis- O-silyl diol (II) (376 mg). A sample of this (64 mg) and $\left(\mathrm{Bu}^{\mathrm{n}}\right)_{4} \mathrm{NF}^{-}(200 \mathrm{mg})$ were stirred in anh. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}(20 \mathrm{ml})$ for 4 h at 25°. $\mathrm{Et}_{2} \mathrm{O}$ extraction and crystallisation $\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ petrol) gave the diol (II) ($17 \mathrm{mg}, 57 \%$), m.p. and mixed m.p. $97-97 \cdot 5^{\circ}$, equivalent to 100 mg of diol (II) from 30 flasks.
Bands $2\left(R_{\mathrm{F}} 0.8\right)$ and $3\left(R_{\mathrm{F}} 0.7\right)$ both exhibited strong triynene absorption but on rechromatography appeared to be complex mixtures of polyacetylenes. From band 2 a crude ester (17 mg), $\nu_{\text {max }}\left(\mathrm{CCl}_{4}\right) 2220$ and $2190(\mathrm{C}=\mathrm{C}), 1740$ (ester CO$), 1290\left(\mathrm{O}^{-} \mathrm{Si}\right)$, and 960 (trans $\left.-\mathrm{CH}=\mathrm{CH}\right) \mathrm{cm}^{-1}$, was obtained. The ester (15 mg) was kept at 40° for 4 h with $\mathrm{N}-\mathrm{HCl}(1 \mathrm{ml})$ and yielded on partition into neutral and acidic products the diol (II) (3 mg) and 3 -phenyl-lactic acid (2 mg), m.p. $122-124^{\circ}$ (lit., ${ }^{10} 122^{\circ}$ for R-acid), $\nu_{\text {max }}$ (Nujol) 3440 and $2500-3100\left(\mathrm{OH}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{H}\right)$ and 1730 (acid CO$)$ $\mathrm{cm}^{-1}, m / e 166\left(M^{+} 40 \%\right)$.
A diffuse triynene-containing band ($R_{\mathrm{F}} 0.05-0.15$) was isolated and yielded a yellow oil (31 mg). This was kept in $4 \mathrm{~N}-\mathrm{HCl}(1 \mathrm{ml})$ at 40° for 2 h ; the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the extract yielded the diol (II) $(7 \mathrm{mg})$. On concentration of the aqueous phase a residue was obtained which on paper chromatography (Whatman no. 1; $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}^{-} \mathrm{HCO}_{2} \mathrm{H}, 81: 6: 13$) behaved identically with glucose. Attempts to obtain a fully silylated pure glycoside were unsuccessful.
Acidic Fraction.-The concentrated acidic fraction was esterified with $4 \% \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{MeOH}$. The combined methyl esters from several growths (90 flasks; 1.64 g) (enediyne absorption) were separated on a SiO_{2} column (150 g) by stepwise elution (petrol- $\mathrm{Et}_{2} \mathrm{O}, 99: 1$, to $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}, 3: 1$, $5 \mathrm{l}) .100 \mathrm{ml}$ Fractions were collected. Those exhibiting enediyne absorption were combined and separated by p.l.c. (petrol- $\mathrm{Et}_{2} \mathrm{O}, 1: 1$) into two major fractions, $\mathrm{A}\left(R_{\mathrm{F}} 0.65\right)$ and $\mathrm{B}\left(R_{\mathrm{F}} 0-55\right)$. P.l.c. of fraction A on $10 \% \mathrm{AgNO}_{3}-\mathrm{SiO}_{2}$ (petrol- $\mathrm{Et}_{2} \mathrm{O}, 3: 1 ; 4$ elutions) yielded methyl 9 -hydroxy-non-trans-7-ene-3,5-diynoate (VII) ${ }^{6}(7 \mathrm{mg})$, m.p. and mixed m.p. $53-55^{\circ}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{petrol}\right)$. A second, slightly more polar compound (ca. 1 mg), $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 281$ (rel. E 12.0), 266 ($15 \cdot 0$), $252(9 \cdot 0), 234(3 \cdot 3)$, and $227(1 \cdot 0) \mathrm{nm}$, $\nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right)$

[^2]$3600(\mathrm{OH}), 2220(\mathrm{C} \equiv \mathrm{C})$, and 1745 (ester CO) $\mathrm{cm}^{-1}, \nu_{\max }$ $\left(\mathrm{CS}_{2}\right) 730\left(\right.$ cis-CH=CH) cm ${ }^{-1}$, could be the cis-ester (VIII).

Analogous work-up of fraction B gave methyl 10-hydroxy-dec-trans-8-ene-4,6-diynoate (VI) (27 mg), identical with a synthetic specimen (see below), and methyl 10 -hydroxydec-cis-8-ene-4,6-diynoate (V) ${ }^{4}$ (51 mg), m.p. ca. 0°, $\lambda_{\max }$ (EtOH) $283(\varepsilon 12,000), 267(15,000), 253(10,500),{ }_{235}^{\max }$ (4800), and $228(2000) \mathrm{nm}$; the remaining spectra were identical with those described.

Two more polyacetylene-containing bands at $R_{F} 0.40$ (enediynene) and $R_{F} 0.2$ (enediyne) were detected: the amount of polyacetylenes present was too small for further investigation.

Fractions immediately preceding the polyacetylenes exhibited benzenoid absorption (u.v.). They were combined and yielded on concentration, p.l.c. (petrol- $\mathrm{Et}_{2} \mathrm{O}, 3: 1 ; 4$ elutions), and crystallisation ($\mathrm{Et}_{2} \mathrm{O}$-petrol) needles of methyl ($2 R$)-3-phenyl-lactate (IX; $\mathrm{R}=\mathrm{Me}$) (187 mg), m.p. $47 \cdot 5$ 48° (lit., ${ }^{10} 48.5^{\circ}$) (Found: C, 66.3; H, 6.7. Calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}: \mathrm{C}, 66.6 ; \mathrm{H}, 6.7 \%$), $[\alpha]^{20}-8.4(589 \mathrm{~nm}),-8.8$ (578), -10 (546), -21.3 (436), and -43° (365) (c 0.01 in EtOH) \{lit., ${ }^{11}[\alpha]^{16 \cdot 3}-5.25(579 \mathrm{~nm}),-6.31(546)$, and $-15.05^{\circ}(436)(c 21.01$ in EtOH$\left.)\right\}$, $v_{\max }\left(\mathrm{CCl}_{4}\right) 3250,1750$, and $1735 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 7 \cdot 06\left(2 \mathrm{H}, \mathrm{d}, J{ }^{\text {ma }} \mathrm{Hz}, \mathrm{CH}_{2} \cdot \mathrm{CHO}\right), 6 \cdot 31$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \cdot \mathrm{CH}_{3}\right), 5 \cdot 66\left(1 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{OH}\right)$, and $2.85\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{\mathrm{j}}\right), m / e 180\left(M^{+}, 3 \%\right), 162(35), 131$ (11), 121 (19), 103 (20), and 91 (100).
(4S)-2,2-Dimethyl-4-(undec-trans-1-ene-3,5,7-triynyl)-1,3dioxolan (X).-The diol (II) (46.5 mg), anh. $\mathrm{CuSO}_{4}(200 \mathrm{mg})$, and $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{3} \mathrm{H}(2 \mathrm{mg})$ were shaken in $\mathrm{Me}_{2} \mathrm{CO}(20 \mathrm{ml})$ for 12 h under N_{2} in the dark. $\mathrm{K}_{2} \mathrm{CO}_{3}$ addition, filtration, and p.l.c. ($\mathrm{Et}_{2} \mathrm{O}-$ petrol, $1: 1 ; 2$ elutions) of the concentrated filtrate yiclded the acetonide (X) ($32 \mathrm{mg}, 57 \%$) , $R_{\mathrm{F}} 0.7$ (Found: $M^{+}, 242 \cdot 13064 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $M, 242 \cdot 1307$), $[x]^{20}+55 \cdot 5(589 \mathrm{~nm}),+59.5(578),+70(546)$, and $+124 \cdot 5^{\circ}$ (436) (c 0.25 in EtOH), $\lambda_{\text {max. }}$ (EtOH) 332 ($\varepsilon 13,500$), 311 (17,800), $292(13,200), 275(6500), 260(3000), 246(48,700)$, and $234(31,300) \mathrm{nm}, \nu_{\max } .\left(\mathrm{CCl}_{4}\right) 2230$ and $2200(\mathrm{C}=\mathrm{C})$ and 952 (trans- $\mathrm{CH}=\mathrm{CH}$) cm^{-1}, $\tau\left(\mathrm{CCl}_{4}\right) 8.98(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2}$), 8.70 and 8.65 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \cdot \mathrm{C}^{2} \cdot \mathrm{CH}_{3}\right), 8.42(2 \mathrm{H}$, sextet, $\left.J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right), 7 \cdot 70(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}=\mathrm{C}\right), 6 \cdot 49[1 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{OCH} \cdot \mathrm{C}(\mathrm{H}) \mathrm{H} \cdot \mathrm{O}], 5.97$ [$1 \mathrm{H}, \mathrm{dd}, J 7$ and $7 \mathrm{~Hz}, \mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{C}(H) \mathrm{H} \cdot \mathrm{O}], 5 \cdot 54[1 \mathrm{H}, \mathrm{m}$, $\left.=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{O}) \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right], 4 \cdot 26(1 \mathrm{H}, \mathrm{d}, J 17 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}=\mathrm{CH})$, and $3.75(1 \mathrm{H}, \mathrm{dd}, J 6$ and $17 \mathrm{~Hz} . \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CHO}), m / e 242\left(M^{+}\right.$, 5%), 122 (100), 107 (36), 93 (44), 79 (26), and 67 (31).
Periodate Cleavage of the Diol (II).-The diol (II) $(24.7 \mathrm{mg})$ and $\mathrm{NaIO}_{4}(100 \mathrm{mg})$ were shaken in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml}), \mathrm{Et}_{2} \mathrm{O}$ $(8 \mathrm{ml})$, and hexane (2 ml) under N_{2} in the dark for 5 h . The $\mathrm{H}_{2} \mathrm{O}$ layer was distilled into dimedone solution. Crystals separated, m.p. and mixed m.p. with authentic $\mathrm{CH}_{2} \mathrm{O}$-dimedone, $189-192^{\circ}$. The concentrated solvent layer yielded on crystallisation (petrol at -20°) pale yellow needles of dodec-trans-2-ene-4,6,8-triynal (XI) ($16 \mathrm{mg}, 76 \%$), m.p. $65-66^{\circ}$ (Found: $M^{+}, 170 \cdot 0732 . \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}$ requires $M, 170 \cdot 0732$), $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 349(\varepsilon 15,700), 326(19,500)$, $306.5(12,700), 289(5700), 265 \cdot 5(48,500)$, and $248(30,500)$ $\mathrm{nm}, v_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 2720$ (CHO), 2225, 2200, and $2120(\mathrm{C}=\mathrm{C})$, 1690 (CHO), and 953 (trans- $\mathrm{CH}=\mathrm{CH}$) cm^{-1}, $\tau\left(\mathrm{CCl}_{4}\right) 8.96$ $\left(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 8.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right)$, $7.65\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \quad \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}=\mathrm{C}\right), 3.45(2 \mathrm{H}, \quad \mathrm{m}$,

[^3]$\mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CHO})$, and $0.41(1 \mathrm{H}, J 3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CHO})$, $m / e 170$ ($M^{+}, 100 \%$), 141 (80), 115 (95), 113 (30), $100(32)$, and 87 (65).

The aldehyde (XI) (22 mg) and $\mathrm{NaBH}_{4}(50 \mathrm{mg}$) were stirred in $\mathrm{MeOH}(5 \mathrm{ml})$ at 0° under N_{2} for 2 h . The product was then isolated with $\mathrm{Et}_{2} \mathrm{O}$ and crystallised ($\mathrm{Et}_{2} \mathrm{O}$-petrol) to yield needles of dodec-trans-2-ene-4,6,8-triyn-1-ol $(19 \cdot 1 \mathrm{mg}$, 85%), m.p. $77-78^{\circ}$ (Found: $M^{+}, 172 \cdot 0884 . \quad \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$ requires $M, 172 \cdot 0888$), $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 329(\varepsilon 10,700), 308(16,600)$, 289.5 (12,500), 273 (6500), 258 (3000), 244 (100,000), and $232(62,000) \mathrm{nm}, v_{\max }\left(\mathrm{CHCl}_{3}\right) 3600$ and $3200(\mathrm{OH}), 2230$ ($\mathrm{C}=\mathrm{C}$), and $950($ trans $-\mathrm{CH}=\mathrm{CH}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 8.97(3 \mathrm{H}, \mathrm{t}, J 7$ $\left.\mathrm{Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 8.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right), 7.67(2 \mathrm{H}, \mathrm{t}, J$ $7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C} \equiv \mathrm{C}$), $5 \cdot 78\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 4 \cdot 16$ ($1 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH}$), and $3.61(1 \mathrm{H}, \mathrm{dt}, J 6$ and $\left.16 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), m / e 172\left(M^{+}, 85 \%\right), 128$ (100), 127 (41), and 115 (82).
Triphenyl-(3-trimethylsilylprop-2-ynyl)phosphonium Bromide (XIII).—Prop-2-yn-1-ol ($28 \mathrm{~g}, 0.5 \mathrm{~mol}$) in $\left[\mathrm{CH}_{2}\right]_{4} \mathrm{O}$ $(150 \mathrm{ml})$ was added dropwise to EtMgBr (from $\mathrm{Mg}(24 \cdot 4 \mathrm{~g})$ and $\mathrm{EtBr}(110 \mathrm{~g})$ in $\left[\mathrm{CH}_{2}\right]_{4} \mathrm{O}(150 \mathrm{ml}\}$ stirred at 0° (ice-water cooling). Stirring was continued for 1.5 h and $\mathrm{Me}_{3} \mathrm{SiCl}$ (110 g) was then added dropwise over 1 h . The mixture was kept at 50° for 1 h and at 20° for 12 h ; after addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ in $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{ml})$ it was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 400$ $\mathrm{ml})$. The extract was washed (brine) and concentrated, and the residue was stirred with ice $(30 \mathrm{~g})-\mathrm{EtOH}(100 \mathrm{ml})-$ HCl (conc., 10 drops) for $1 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ extraction and fractional distillation yielded 3 -trimethylsilylprop-2-yn-1-ol $(27.7 \mathrm{~g}, 50 \%)$, b.p. $77.5-78^{\circ}$ at 12 mmHg (lit., ${ }^{12} 76^{\circ}$ at 11 $\mathrm{mmHg}), \nu_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 3600$ and 3450 (free and bonded OH) and $2185(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 9.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 7.95(1 \mathrm{H}, \mathrm{s}$, OH), and $5.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right)$, $m / e 128\left(M^{+}, 2 \%\right)$, 113 (82), 85 (100), 75 (30), 73 (22), and 61 (36).

This ($5 \cdot 16 \mathrm{~g}, 40 \mathrm{mmol}$) in $\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{CHO}(20 \mathrm{ml})$ was added to $\mathrm{Ph}_{3} \mathrm{PBr}_{2}{ }^{13}$ [from $\mathrm{Br}_{2}(3.35 \mathrm{ml}, 60 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(24 \mathrm{~g}, 91$ mmol)] stirred in $\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{CHO}(100 \mathrm{ml})$ under N_{2} at 0°. Stirring was continued first at $0^{\circ}(3 \mathrm{~h})$ and then at 20° $(12 \mathrm{~h})$. The mixture was extracted with petrol $(3 \times 100$ $\mathrm{ml})$; the extract was washed with $\mathrm{NaHCO}_{3}-\mathrm{H}_{2} \mathrm{O}$, dried, filtered, and concentrated, and the liquid residue was chromatographed on $\mathrm{SiO}_{2}(120 \mathrm{~g})$ from petrol. Concentration of the eluate and fractional distillation gave 3 -bromo-1-trimethylsilylprop-1-yne ($5.6 \mathrm{~g}, 71 \%$), b.p. $44-45^{\circ}$ at 2 $\mathrm{mmHg}, R_{\mathrm{F}} 0.73$ (petrol- $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 38.25 ; H, 5.95 ; $\mathrm{Br}, 42 \cdot 45 . \quad \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{BrSi}$ requires $\mathrm{C}, \mathbf{3 7 . 7} ; \mathrm{H}, 5 \cdot 75 ; \mathrm{Br}$, $41.9 \%), \nu_{\max .}\left(\mathrm{CCl}_{4}\right) 2180(\mathrm{C} \equiv \mathrm{C}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 9.85(9 \mathrm{H}, \mathrm{s}$, $\mathrm{MeSi})$ and $6.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right)$.

The bromide ($2.0 \mathrm{~g}, 10.5 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(3.56 \mathrm{~g}, 13.6$ mmol) were stirred in $\mathrm{C}_{6} \mathrm{H}_{6}(20 \mathrm{ml})$ in the dark at 20° for 18 h . The precipitate was filtered off, washed with petrol, and dried ($30-40^{\circ}$ at 0.2 mmHg for 8 h) to yield the phosphonium bromide (XIII) ($3.2 \mathrm{~g}, 67 \%$), m.p. $154-156^{\circ}$ (Found: $\mathrm{C}, 63.9 ; \mathrm{H}, 5.9 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrPSi}$ requires $\mathrm{C}, 63.6$; $\mathrm{H}, 5.7 \%$). An attempt to recrystallise the Wittig salt (MeOH-EtOAc-hexane) led to decomposition, so the crude, dried salt was used directly in the Wittig reaction.

2,3-O-Isopropylidene-D-glyceraldehyde (XIV). $-\mathrm{NaIO}_{4}$ $(0.58 \mathrm{~g}, 2.6 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$, treated with a little NaHCO_{3} (cloudiness) was shaken with a suspension of 1,2,5,6-di- O-isopropylidene-1)-mannitol ${ }^{14} \quad(312 \mathrm{mg}, \quad 1 \cdot 19$
${ }^{12}$ M. F. Shostakovskii, N. V. Komarov, and O. G. Yarosh, Bull. Acad. Sci. U.S.S.R., 1966, 79.
${ }^{13}$ G. A. Wiley, R. L.' Hershkowitz, B. M. Rein, and B. C. Chung, J. Amer. Chem. Soc., 1964, 86, 964.
${ }_{14}$ E. Baer, J. Amer. Chem. Soc., 1945, 67, 338.
mmol) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ for 15 min . The layers were separated and the $\mathrm{H}_{2} \mathrm{O}$ layer was saturated with NaCl and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$. The combined extracts were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated. The crude aldehyde (XIV), $R_{\mathrm{F}} 0.25\left(\mathrm{Et}_{2} \mathrm{O}\right),[\alpha]^{20}+45.5(588 \mathrm{~nm}),+46$ (578), +55 (546), and $+116^{\circ}$ (436) (c 0.777 in benzene) \{lit., ${ }^{15}$ $[\alpha]_{\mathrm{D}}{ }^{21}+64.9^{\circ}$ (c $5 \cdot 73$ in benzene) for distilled aldehyde\}, $\nu_{\text {max }} 1740(\mathrm{CO})$ and 1385 and $1365\left(\mathrm{CMe}_{2}\right) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right)$ $8 \cdot 6$ and $8 \cdot 5$ (each s, CMe_{2}), $5 \cdot 9$ and $5 \cdot 7$ (each m, $\mathrm{OCH} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}$), and 0.3 (s, CHO), was used in the Wittig reaction
trans- and cis-(4S)-2,2-Dimethyl-4-(4-trimethylsilylbut-1-en-3-ynyl)-1,3-dioxolan [trans- and cis-(XV)].-The Wittig salt (XIII) ($1.836 \mathrm{~g}, 4.05 \mathrm{mmol}$) was suspended in dry $\left[\mathrm{CH}_{2}\right]_{4} \mathrm{O}(20 \mathrm{ml})$ under N_{2} at -78° and $\mathrm{Bu}{ }^{\mathrm{n} i}$ in hexane $(2 \cdot 2 \mathrm{ml}, 4 \cdot 1 \mathrm{mmol})$ was added over 5 min . The mixture was kept at -40° for 0.5 h , then cooled again to -78°, and 2,3-O-isopropylidene-d-glyceraldehyde (XIV) (from $1 \cdot 19$ mmol of di-isopropylidene-d-mannitol) in dry $\left[\mathrm{CH}_{2}\right]_{4} \mathrm{O}$ $(2 \mathrm{ml})$ was added slowly to it. After 1 h at -78° and 1 h at $0^{\circ}, \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was added to the mixture, the solids were removed by filtration, and the filtrate was concentrated. The residue was separated by p.l.c. (5\% $\mathrm{Et}_{2} \mathrm{O}-$ petrol; continuous elution) into two bands with $R_{\mathrm{F}} 0.7$ and 0.5 , respectively. The less polar band yielded the cisdioxolan $[$ cis-(XV)] ($214 \mathrm{mg}, 0.95 \mathrm{mmol}, 40 \%$ from diisopropylidenemannitol), b.p. $58-60^{\circ}$ (bath) at 1 mmHg (Found: $\mathrm{C}, 64.5 ; \mathrm{H}, 9 \cdot 0 . \quad \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Si}$ requires C, $64 \cdot 3 ; \mathrm{H}$, $8.9 \%),[\alpha]^{20}-3.8(589 \mathrm{~nm}),-4.2(578),-5.5(546),-23$ (436), and $-72^{\circ}(365)\left(c 1.837\right.$ in EtOH), $\lambda_{\text {max }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 247$ ($\varepsilon 11,100$), $236(13,300)$, and $227(9300) \mathrm{nm}, \nu_{\text {max }}\left(\mathrm{CCl}_{4}\right) 2150$ $(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}, \nu_{\text {max }}\left(\mathrm{CS}_{2}\right) 780($ cis $-\mathrm{CH}=\mathrm{CH}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right)$ $9.97\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 8.86\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{C}\right), 6.70[1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}$, $\mathrm{CH} \cdot \mathrm{CH}(\mathrm{H}) \mathrm{O}], 6 \cdot 08[1 \mathrm{H}, \mathrm{dd}, J 7$ and $8 \mathrm{~Hz}, \mathrm{CH} \cdot \mathrm{CH}(\mathrm{H}) \mathrm{O}]$, $5 \cdot 29\left[1 \mathrm{H}, \mathrm{q}, J 8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{O}) \cdot \mathrm{CH}_{2}\right], 4 \cdot 70(1 \mathrm{H}, \mathrm{d}, J 11$ $\mathrm{Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH}-$ cis), and $4 \cdot 27(1 \mathrm{H}, \mathrm{dd}, J 11$ and 8 Hz , $\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CHO}$), $m / e 224\left(M^{+}, 5 \%\right), 209(10), 167(10), 166$ (15), 151 (37), 109 (48), 97 (15), 83 (25), 73 (100), and 72 (45).

The more polar band yielded the trans-dioxolan [trans(XV)] ($43 \mathrm{mg}, 0.2 \mathrm{mmol}, 9 \%$ from di-isopropylidenemannitol), b.p. $60-62^{\circ}$ (bath) at 1 mmHg (Found: C, $64 \cdot 3$; $\mathrm{H}, 9 \cdot 2 \%$), $[\alpha]^{20}+55(589 \mathrm{~nm}),+58(578),+67(546)$, +123 (436), and $+206^{\circ}$ (365) (c 0.457 in EtOH), $\lambda_{\text {max }}$. $\left(\mathrm{Et}_{2} \mathrm{O}\right) 246(\varepsilon 19,600), 235(23,700)$, and $226(16,700) \mathrm{nm}$, $\nu_{\text {max }}\left(\mathrm{CCl}_{4}\right) 2160$ and $2130(\mathrm{C}=\mathrm{C}$) and 950 (trans $-\mathrm{CH}=\mathrm{CH}$) $\mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 9.97\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 8.88$ and 8.83 (each $3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \cdot \mathrm{C}^{-} \cdot \mathrm{CH}_{3}\right), 6 \cdot 62[1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{CH} \cdot \mathrm{CH}(\mathrm{H}) \mathrm{O}], 6 \cdot 13[1 \mathrm{H}, \mathrm{dd}$, $J 7$ and $\left.8 \mathrm{~Hz}, \mathrm{CH} \cdot \mathrm{CH}(\mathrm{H}) \mathrm{O}^{-}\right], 5 \cdot 70[1 \mathrm{H}, \mathrm{qm}, J 7 \mathrm{~Hz}$, $\left.=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{O}) \cdot \mathrm{CH}_{2}\right], 4 \cdot 48(1 \mathrm{H}, \mathrm{d}, J 17 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}=\mathrm{CH})$, and $4.09(1 \mathrm{H}$, dd, $J 17$ and $6 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CHO})$, $\tau\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ 6.99 (complex t, $J 8 \mathrm{~Hz}$), 6.61 (dd, $J 7$ and 9 Hz), 6.12 (qm, $J 7 \mathrm{~Hz}$), $4.51(\mathrm{~d}, J 17 \mathrm{~Hz}$), and $4 \cdot 17$ (dd, $J 7$ and 17 Hz) [on irradiation around $\tau 6.12$ the triplet at $\tau 6.99$ changed into a very different multiplet, and on irradiation at $\tau 6.99$ the quadruple multiplet collapsed into a double multiplet with $J c a .7 \mathrm{~Hz}$], $m / e 224$ ($M^{+}, 5 \%$), 209 (10), 151 (12), 109 (30), 73 (75), and 43 (100).

When the aldehyde (XIV) was added to the phosphorane at -40° and the mixture was kept for 1 h at 0° the combined yield of the cis- and trans-dioxolans (XV) was 42% and the cis-trans ratio was $1-25: 1$.
(4S)-4-(But-trans-1-en-3-ynyl)-2,2-dimethyl-1,3-dioxolan [trans-(XVI)].-To the silyldioxolan [trans-(XV)] (177 mg , 0.79 mmol) in EtOH (15 ml) stirred at 0° under N_{2} was added dropwise AgNO_{3} ($552 \mathrm{mg}, 3.25 \mathrm{mmol}$) in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{ml} ; 1: 1)$ over 30 min . After 1 h at $0^{\circ}, \mathrm{KCN}(1.5 \mathrm{~g})$ in
$\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was added and the product was isolated with $\mathrm{Et}_{2} \mathrm{O}$. Purification by p.l.c. ($\mathrm{Et}_{2} \mathrm{O}-$ petrol, $1: 19 ; 2$ elutions) gave the trans-ethynyl acetonide [trans-(XVI)] (48 mg , $39 \%),[\alpha]^{21}+11(589 \mathrm{~nm}),+11(578),+13(546),+24(436)$, and $+38^{\circ}$ (365) (c 0.755 in EtOH$)$, $\lambda_{\max }\left(\mathrm{Et}_{2} \mathrm{O}\right)$ 232sh ($\varepsilon 6100$) and $224(7500) \mathrm{nm}, \nu_{\text {max }}\left(\mathrm{CCl}_{4}\right) 3310(\mathrm{C}=\mathrm{CH})$ and 955 (trans- $\mathrm{CH}=\mathrm{CH}$) $\mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 8.67$ and 8.64 (each 3 H , s, $\left.\mathrm{CH}_{3} \cdot \mathrm{C}^{2} \mathrm{CH}_{3}\right), 7.23(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 6.47[1 \mathrm{H}, \mathrm{t}, J$ $8 \mathrm{~Hz}, \mathrm{OCH} \cdot \mathrm{CH}(\mathrm{H}) \cdot \mathrm{O}], 5.97[1 \mathrm{H}, \mathrm{dd}, J 7$ and 8 Hz , $\mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{CH}(\mathrm{H}) \cdot \mathrm{O}], 5 \cdot 55\left[1 \mathrm{H}, \mathrm{qm}, J 7 \mathrm{~Hz}, \mathrm{CH} \cdot \mathrm{CH}(\mathrm{O}) \cdot \mathrm{CH}_{2}\right]$, $4.35(\mathrm{lH}$, dd, $J 1.5$ and $16 \mathrm{~Hz}, \mathrm{HC}=\mathrm{C} \cdot \mathrm{CH}=\mathrm{CH})$, and 3.89 $(1 \mathrm{H}, \mathrm{dd}, J 6$ and $16 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}=\mathrm{C} H \cdot \mathrm{CH}), m / e 152\left(M^{+}, 2 \%\right)$, 137 (45), 122 (45), 107 (40), 95 (10), 94 (16), 93 (15), 79 (50), 77 (30), 72 (60), 66 (60), 65 (60), 63 (55), 59 (43), 52 (40), 51 (60), and 43 (100).
(4S)-2,2-Dimethyl-4-(undec-trans-1-ene-3,5,7-triynyl)-1,3dioxolan (X). The trans-dioxolan [trans-(XVI)] (86 mg , 0.16 mmol) in $\mathrm{MeOH}(0.6 \mathrm{ml})$ was added over 5 min to a stirred solution of $\mathrm{CuCl}(6 \mathrm{mg}), \mathrm{NH}_{2} \mathrm{OH}, \mathrm{HCl}(85 \mathrm{mg})$, and $\mathrm{EtNH}_{2}\left(40 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O} ; 2 \mathrm{ml}\right)$ in $\mathrm{MeOH}(2 \mathrm{ml})-\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{CHO}$ $(0.5 \mathrm{ml})$ under N_{2} at 10°. After $5 \mathrm{~min}, 1$-bromohepta-1,3diyne ($144 \mathrm{mg}, 0.84 \mathrm{mmol}$) (for preparation see below) in $\mathrm{MeOH}(1 \mathrm{ml})$ was added dropwise over 10 min . The mixture was stirred at 10° for 1 h , then KCN (100 mg), $\mathrm{H}_{2} \mathrm{O}$ $(6 \mathrm{ml})$, and ice (3 g) were added. Isolation by $\mathrm{Et}_{2} \mathrm{O}$ extraction ($4 \times 10 \mathrm{ml}$) and p.l.c. $\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{petrol}, \mathrm{l}: 19\right)$ yielded the trans-triynene acetonide (X) ($77 \mathrm{mg}, 56 \%$), $[\alpha]^{20}+41(589 \mathrm{~nm}),+44 \cdot 5(578),+53(546)$, and $+108^{\circ}(436)$ (c 0.239 in EtOH); the u.v., i.r., n.m.r., and mass spectra were identical with those quoted above.
(2S)-Tridec-trans-3-ene-5,7,9-triyne-1,2-diol (II).—The synthetic trans-dioxolan (X) (50 mg) was stirred for 3 h in $\mathrm{EtOH}(10 \mathrm{ml})-\mathrm{HCl}(2 \mathrm{~N} ; 2.5 \mathrm{ml})$ under N_{2} at $20^{\circ} . \mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{ml})$ addition, $\mathrm{Et}_{2} \mathrm{O}$ extraction, chromatography $\left(\mathrm{SiO}_{2}\right.$ column, $10 \mathrm{~g} ; \mathrm{Et}_{2} \mathrm{O}$) and crystallisation ($\mathrm{Et}_{2} \mathrm{O}$-petrol) gave the diol (II), m.p. and mixed m.p. 96-97 ${ }^{\circ},[\alpha]^{20}-6(589 \mathrm{~nm})$, -7 (578), -8.5 (546), and -12.5° (436) (c 0.571 in EtOH); the spectra were identical with those of the natural product.
(2S)-6-Trimethylsilylhex-trans-3-en-5-yne-1, 2-diol [trans-
(XVIII)]. $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{3} \mathrm{H}$ (15 mg) and the dioxolan [trans-(XV)] ($48 \mathrm{mg}, 0.22 \mathrm{mmol}$) were stirred in MeOH (3 $\mathrm{ml})$ under N_{2} in the dark at 20° for 2 h . Concentration and p.l.c. ($\mathrm{Et}_{2} \mathrm{O}$) gave the trans-trimethylsilyl diol [trans(XVIII)] ($32 \mathrm{mg}, 81 \%$), $R_{\mathrm{F}} 0 \cdot 33,[\alpha]{ }^{20}-20(589 \mathrm{~nm})$, -21.5 (578), -24.5 (546), -46 (436), and -82° (365) (c 0.578 in EtOH), $\lambda_{\text {max. }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 246(\varepsilon 12,300), 236(15,300)$, and $226(11,200) \mathrm{nm}, \nu_{\text {max }} .\left(\mathrm{CCl}_{4}\right) 3600(\mathrm{OH}), 2130(\mathrm{C}=\mathrm{C})$, and 955 (trans- $\mathrm{CH}=\mathrm{CH}$) $\mathrm{cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 9 \cdot 80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 7 \cdot 4$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{HO} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right.$; disappears on addn. of $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $6.15-6.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 5.55-5.80(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right), 4 \cdot 18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}=\mathrm{CH})$, and $3 \cdot 84$ $(1 \mathrm{H}, \mathrm{dd}, J 5$ and $16 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}), m / e 169\left(M^{+}-15\right.$, 50%), $153\left(M^{+}-\mathrm{CH}_{2} \mathrm{OH}, 100\right), 125$ (55), 75 (69), and 73 (67).
(4S)-4-(But-cis-1-en-3-ynyl)-2,2-dimethyl-1,3-dioxolan [cis-(XVI)].-The cis-trimethylsilyl dioxolan [cis-(XV)] (200 $\mathrm{mg}, 0.9 \mathrm{mmol})$ was desilylated analogously to the transisomer and gave the cis-ethynyl acetonide [cis-(XVI)] (87 mg , $64 \%),[\alpha]^{20}-6.5(589 \mathrm{~nm}),-7 \cdot 0(578),-9(546),-29(436)$, and $-82^{\circ}(365)\left(c 0.332\right.$ in EtOH), $\lambda_{\text {max. }} 233 \mathrm{sh}(\varepsilon 7600)$ and $225(8600) \mathrm{nm}, \nu_{\max }\left(\mathrm{CCl}_{4}\right) 3310(\mathrm{C}=\mathrm{CH}), 3040(\mathrm{CH}=\mathrm{CH})$, and $2100(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}, \nu_{\max }\left(\mathrm{CS}_{2}\right) 3310(\mathrm{C} \equiv \mathrm{CH})$ and 750 (cis$\mathrm{CH}=\mathrm{CH}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 8.68\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \cdot \mathrm{C}^{2} \cdot \mathrm{CH}_{3}\right), 6.95(1 \mathrm{H}, \mathrm{d}$,

[^4] 622.
$J 1.5 \mathrm{~Hz}, H \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}=), 6.51[1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{CH}(\mathrm{H}) \cdot \mathrm{O}]$, $5 \cdot 88[1 \mathrm{H}, \mathrm{dd}, J 6$ and $8 \mathrm{~Hz}, \mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{CH}(\mathrm{H}) \cdot \mathrm{O}], 5 \cdot 05(1 \mathrm{H}, \mathrm{qm}$, $\left.J 8 \mathrm{~Hz},=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{O}) \cdot \mathrm{CH}_{2}\right), 4.48(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and 11 Hz , $\mathrm{HC} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH}-c i s)$, and $4.00[1 \mathrm{H}, \mathrm{dd}, J 8$ and 11 Hz , $\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CHO}], m / e 137\left(M^{+}-15,93 \%\right), 122(80), 107(65)$, 95 (74), 94 (22), 93 (25), 79 (50), 78 (25), 77 (35), 72 (70), 65 (50), and 43 (100).
(4S)-2,2-Dimethyl-4-(undec-cis-1-ene-3,5,7-triynyl)-1,3-dioxolan [cis-(X)].-The dioxolan [cis-(XVI)] gave in a coupling reaction carried out analogously to that with the transisomer the chromatographically homogeneous cis-triynene dioxolan $\left[\right.$ cis-(X)], $[\alpha]^{20}-50(589 \mathrm{~nm}),-54(578),-65(546)$, and -164° (436) (c 0.312 in EtOH), $\lambda_{\text {max }}(\mathrm{EtOH}) 332(\varepsilon$ $10,200), 310(14,000), 291(10,800), 274(6000), 259(4000)$, $245 \cdot 5(92,500)$, and $234(64,200) \mathrm{nm}, \nu_{\max }\left(\mathrm{CCl}_{4}\right) 2210$ and $2180(\mathrm{C} \equiv \mathrm{C}) \mathrm{cm}^{-1}, \nu_{\text {max }}\left(\mathrm{CS}_{2}\right) 785($ cis $-\mathrm{CH}=\mathrm{CH}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right)$ $8.98\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 8.68\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \cdot \mathrm{C}^{2} \cdot \mathrm{CH}_{3}\right), 8 \cdot 41$ (2 H , sextet, $J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}$) $7 \cdot 79(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}=\mathrm{C}\right), 6 \cdot 52[1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{CH}(\mathrm{H}) \cdot \mathrm{O}], 5 \cdot 87$ [1H, dd, $J 7$ and $8 \mathrm{~Hz}, \mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{CH}(\mathrm{H}) \cdot \mathrm{O}], 5 \cdot 08[1 \mathrm{H}, \mathrm{qm}, J 7$ $\left.\mathrm{Hz},=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{O}) \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right], 4.43(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH})$, and $3.89(1 \mathrm{H}, \mathrm{dd}, J 8$ and $12 \mathrm{~Hz}, \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}), m / e 242$ ($M^{+}, 7 \%$), 227 (24), 212 (31), 185 (31), 184 (100), 155 (47), 141 (75), 128 (50), 127 (60), 115 (80), 114 (24), 99 (21), and 87 (21).
(2S)-Tridec-cis-3-ene-5,7,9-triyne-1,2-diol [cis-(II)].-The dioxolan [cis-(X)] (40 mg) gave, analogously to the transisomer, the cis-diol [cis-(II)] (20 mg) as needles, m.p. $73-74^{\circ}$ (Found: C, 77.5; H, 7.0. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, $77.3 ; \mathrm{H}$, $7 \cdot 0 \%$), $[\alpha]^{20}-38(589 \mathrm{~nm}),-42(578),-40.5(546)$, and $-69.5^{\circ}(436)\left(c 0.253\right.$ in EtOH), $\lambda_{\text {max. }}(\mathrm{EtOH}) 326(\varepsilon 12,600)$, 309 (18,200), $290(14,000), 273$ (7300), 258 (4300), 243 $(106,000)$, and $232(75,500) \mathrm{nm}, \nu_{\max }\left(\mathrm{CCl}_{4}\right) 3600$ and 3350 (OH) and $2210(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$, $\nu_{\max }\left(\mathrm{CS}_{2}\right) 780 \quad$ (cis $\left.-\mathrm{CH}=\mathrm{CH}\right)$ $\mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 8.92\left(3 \mathrm{H}, \mathrm{t}, J^{\text {max }} \mathrm{Hz}_{2} \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 8.42(\mathrm{~m}$, $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}$), $7 \cdot 89 \mathrm{br}\left(\mathrm{OH}\right.$, disappears on addn. of $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $7 \cdot 70\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}=\mathrm{C}\right), 7 \cdot 58 \mathrm{br}(\mathrm{OH}$, disappears on addn. of $\left.\mathrm{D}_{2} \mathrm{O}\right), 6 \cdot 36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right), 5 \cdot 34(\mathrm{lH}, \mathrm{m}$, $\left.\mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right), 4 \cdot 38(1 \mathrm{H}, \mathrm{dd}, J 12$ and $1 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH})$, and $3.89(1 \mathrm{H}, \mathrm{dd}, J 12$ and $8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH} \cdot \mathrm{O})$.
(2S)-6-Trimethylsilylhex-cis-3-en-5-yne-1,2-diol [cis-(XVIII)].-The cis-dioxolan (XV) ($75 \mathrm{mg}, 0.34 \mathrm{mmol}$) was treated with $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \cdot \mathrm{SO}_{3} \mathrm{H}(25 \mathrm{mg})$ as described for the trans-isomer and gave the cis-trimethylsilyl diol [cis(XVIII)] ($54 \mathrm{mg}, 88 \%$), $[\alpha]^{20}+19$ (589 nm), +20 (578), $+22.5(546),+38(436)$, and $+56.5^{\circ}(365)(c 0.863$ in EtOH$)$, $\lambda_{\text {max }}\left(\mathrm{Et}_{2} \mathrm{O}\right) 244(\varepsilon 11,300)$ and $234(13,800) \mathrm{nm}, \nu_{\text {max }}\left(\mathrm{CCl}_{4}\right)$ $3600(\mathrm{OH})$ and $2150(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}, v_{\max }\left(\mathrm{CS}_{2}\right) 765($ cis $-\mathrm{CH}=\mathrm{CH})$ $\mathrm{cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) \quad 9 \cdot 80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 7 \cdot 80 \mathrm{br}(2 \mathrm{H}, \mathrm{s}$, $\mathrm{HO} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$; disappears on addn. of $\mathrm{D}_{2} \mathrm{O}$), $6 \cdot 1-6.45$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{O} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right), 5 \cdot 1-5 \cdot 35[1 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{O}) \cdot \mathrm{CH}_{2}\right], 4 \cdot 35(1 \mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH})$, and $4 \cdot 04[1 \mathrm{H}, \mathrm{dd}, J 11$ and $7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}(\mathrm{O})], m / e 184$ $\left(M^{+},<1 \%\right), 153\left(M^{+}-\mathrm{CH}_{2} \mathrm{OH}, 34\right), 125(17), 75(72)$, and 73 (100).

1-Bromohepta-1,3-diyne.- $\mathrm{To} \mathrm{CuCl}(120 \mathrm{mg}), \mathrm{NH}_{2} \mathrm{OH}, \mathrm{HCl}$ $(4 \cdot 2 \mathrm{~g}), \mathrm{EtNH}_{2}-\mathrm{H}_{2} \mathrm{O}(40 \%, 4 \cdot 8 \mathrm{ml})$, and $\mathrm{MeOH}(10 \mathrm{ml})$ stirred under N_{2} at 20° were added first 3-methylpent-1-yn3 -ol ($2.95 \mathrm{~g}, 30 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{ml})$, and then, after 20 min , 1-bromopent-l-yne ($4.42 \mathrm{~g}, 30 \mathrm{mmol}$) in MeOH $(50 \mathrm{ml})$. After further stirring (2 h), ice (150 g) $-\mathrm{H}_{2} \mathrm{O}$ $(300 \mathrm{ml})-\mathrm{KCN}(1.5 \mathrm{~g})$ was added. The oily residue obtained on $\mathrm{Et}_{2} \mathrm{O}$ extraction and concentration was dissolved in EtOH (15 ml) and shaken for 0.5 h in the dark with AgNO_{3} $(500 \mathrm{mg})$ in $\mathrm{EtOH}(5 \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The mixture was
filtered and the filtrate diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The concentrated extract was chromatographed ($\mathrm{SiO}_{2} ; \mathrm{Et}_{2} \mathrm{O}$-petrol, 30\%) and yielded 3-methyldeca-4,6-diyn3 -ol ($2 \cdot 13 \mathrm{~g}, 44 \%$), b.p. $80-85^{\circ}$ (bath) (Found: C, 79.6 ; H, $9.9 . \quad \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}$ requires $\left.\mathrm{C}, 80.5 ; \mathrm{H}, 9.9 \%\right)$, $v_{\text {max. }}\left(\mathrm{CCl}_{4}\right) 3610$ and $3300(\mathrm{OH})$ and $2245(\mathrm{C} \equiv \mathrm{C}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 8.98(6 \mathrm{H}, \mathrm{t}$, $\left.J 7 \mathrm{~Hz}, 2 \times \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 8.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{C} \cdot \mathrm{C} \cdot \mathrm{CH}_{3}\right), 8 \cdot 30-8 \cdot 42$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}\right), 7 \cdot 75\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}=\mathrm{C}\right)$, and $7 \cdot 37 \mathrm{br}(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

The carbinol (1.45 g) and $\mathrm{KOH}(24 \mathrm{mg})$ were placed in the distillation flask of a short-path distillation apparatus and plunged at 15 mmHg into an oil-bath kept at 135°. The crude distillate was collected at -78° and gave on chromatography (SiO_{2}; petrol) hepta-1,3-diyne ${ }^{16}(0.71 \mathrm{~g}, 88 \%)$, $v_{\max }\left(\mathrm{CCl}_{4}\right) 3320(\mathrm{C}=\mathrm{C}-\mathrm{H})$ and $2230(\mathrm{C} \equiv \mathrm{C}) \mathrm{cm}^{-1}$. This in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$ was added dropwise to a vigorously stirred solution of NaOBr [from $\mathrm{NaOH}(6.4 \mathrm{~g}), \mathrm{Br}_{2}(3.7 \mathrm{ml})$, ice $(25 \mathrm{~g})$ and $\left.\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})\right]$. After 2 h stirring, $\mathrm{Et}_{2} \mathrm{O}$ extraction followed by chromatography $\left(\mathrm{SiO}_{2}\right.$; petrol- $\left.\mathrm{Et}_{2} \mathrm{O}, 4: 1\right)$ gave 1 -bromohepta-1,3-diyne ($1.25 \mathrm{mg}, 95 \%$) as an unstable oil, $\nu_{\text {max }}\left(\mathrm{CCl}_{4}\right) 2150(\mathrm{C} \equiv \mathrm{C}) \mathrm{cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 8.98(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \cdot{ }^{\text {max }} \mathrm{CH}_{2}\right), 8 \cdot 42\left(2 \mathrm{H}\right.$, sextet, $\left.J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right)$, and $7 \cdot 77$ ($2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}=\mathrm{C}$), which was used directly in the coupling reaction.

Synthesis of Methyl 10-Hydroxydec-trans-8-ene-4,6-diynoate (VI; $\mathrm{R}=\mathrm{Me}$) and Methyl 9-Hydroxynon-trans-7-ene-3,5diynoate (VII; $\mathrm{R}=\mathrm{Me}$). -The reaction sequence described ${ }^{6}$ for the synthesis of the ester (VII; $R=M e$) was used with modifications which considerably increased the yields. $\mathrm{CrO}_{3}(7.5 \mathrm{~g})$ in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ was added dropwise to pent-4-yn-1-ol (5.5 g) stirred in $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{ml})-\mathrm{Me}_{2} \mathrm{CO}(30 \mathrm{ml})$ below 20°. Stirring was continued for $1 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was added, and pent-4-yn-l-oic acid was isolated with $\mathrm{Et}_{2} \mathrm{O}$ and NaHCO_{3} and crystallised ($\mathrm{CCl}_{4}-$ petrol); yield $4 \cdot 1 \mathrm{~g}\left(64 \%\right.$); m.p. $60-62^{\circ}$ (lit., ${ }^{17} 57-58^{\circ}$) (Found: C, $61 \cdot 0 ; \mathrm{H}, 6.0$. Calc. for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2}$: C, $61.2 ; \mathrm{H}$, $6.2 \%), \tau\left(\mathrm{CCl}_{4}\right) 8.14\left(1 \mathrm{H}, \mathrm{t}, J 2.5 \mathrm{~Hz}, \mathrm{HC} \equiv \mathrm{C} \cdot \mathrm{CH}_{2}\right), 7 \cdot 45 \mathrm{br}$ $\left(4 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}\right)$, and $-1.23\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right.$; disappears on $\mathrm{D}_{2} \mathrm{O}$ addition). This ($0.98 \mathrm{~g}, 10 \mathrm{mmol}$) in MeOH $(5 \mathrm{ml})$ was added to $\mathrm{CuCl}(100 \mathrm{mg}), \mathrm{NH}_{2} \cdot \mathrm{OH}, \mathrm{HCl}(1 \cdot 1 \mathrm{~g})$, and $\mathrm{EtNH}_{2}\left(30 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O} ; 2.5 \mathrm{ml}\right)$ stirred in $\mathrm{MeOH}(5 \mathrm{ml})$ under N_{2} at 0°. After $5 \mathrm{~min}, 5$-bromopent-trans-2-en- 4 -yn1 -ol ${ }^{6}(1.77 \mathrm{~g}, 11 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{ml})$ was added dropwise and stirring was continued for $2 \mathrm{~h} . \mathrm{HCl}(50 \mathrm{ml} ; 0 \cdot 1 \mathrm{~N})$ was added and the acids were isolated by $\mathrm{Et}_{2} \mathrm{O}$ and NaHCO_{3} extraction and kept in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{SO}_{4}(4 \%, 50 \mathrm{ml})$ for 24 h . Usual work-up and p.l.c. (petrol-Et $\mathrm{t}_{2} \mathrm{O}, 3: 1 ; 4$ elutions) gave the C_{10} ester (VI; $\left.\mathrm{R}=\mathrm{Me}\right)(1.23 \mathrm{~g}, 64 \%)$, m.p. ca. 15° (Found: $M^{+}, 192.0780 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$ requires $M, 192 \cdot 0786$), $\lambda_{\text {max }}(\mathrm{EtOH}) 282(\varepsilon 16,000), 267(21,500), 252 \cdot 5(15,750)$, $240(7500)$, and $229(3500) \mathrm{nm}, \nu_{\max }\left(\mathrm{CCl}_{4}\right) 3620$ and 3460 (free and bonded OH), 2240 and $2140(\mathrm{C} \equiv \mathrm{C}$), 1740 (ester CO), $1640\left(\mathrm{C}=\mathrm{C}\right.$), and 950 (trans $-\mathrm{CH}=\mathrm{CH}$) cm^{-1}, $\tau\left(\mathrm{CCl}_{4}\right) 8.0 \mathrm{br}\left(\mathrm{lH}, \mathrm{s}, \mathrm{OH}\right.$; disappears on $\mathrm{D}_{2} \mathrm{O}$ addition), $7 \cdot 4 \mathrm{br}\left(4 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}\right), 6 \cdot 30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \cdot \mathrm{CH}_{3}\right)$, $5.83\left(2 \mathrm{H}, \mathrm{dd}, J 2\right.$ and $\left.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 4 \cdot 26(1 \mathrm{H}, \mathrm{dd}$, $J 2$ and $\left.16 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right)$, and $3.63(1 \mathrm{H}, \mathrm{dt}, J 5$ and $\left.16 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), m / e 192\left(M^{+}, 87 \%\right), 177(15)$, 163 (25), 161 (41), 149 (35), 135 (28), 133 (100), 132 (58), 131 (56), 121 (62), 119 (80), 115 (36), 103 (84), 98 (27), 91 (98), 89 (55), 77 (95), 65 (58), 63 (66), and 59 (39).

But-3-ynoic acid [prepared from but-3-yn-1-ol as above in

[^5]62% yield, m.p. $82-84^{\circ}\left(\right.$ lit., $\left.^{6} 84^{\circ}\right), \tau\left(\mathrm{CCl}_{4}\right) 7 \cdot 92(1 \mathrm{H}, \mathrm{t}, J 3$ $\mathrm{Hz}, \mathrm{HC} \equiv \mathrm{C}), 6 \cdot 70\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}\right)$, and $-1 \cdot 0$ $\left.\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right)\right](0.84 \mathrm{~g}, 10 \mathrm{mmol})$ gave analogously the C_{9} ester (VII; $\mathrm{R}=\mathrm{Me}$) ($\mathrm{l} .03 \mathrm{~g}, 58 \%$), m.p. $55-56^{\circ}$ (lit., ${ }^{6} 56^{\circ}$), $\tau\left(\mathrm{CCl}_{4}\right) 7 \cdot 80 \mathrm{br}\left(1 \mathrm{H}, \mathrm{CH}_{2} \cdot \mathrm{OH}\right.$; disappears on $\mathrm{D}_{2} \mathrm{O}$ addition), $6 \cdot 64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}\right), 6 \cdot 26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \cdot \mathrm{CH}_{3}\right), 5 \cdot 83(2 \mathrm{H}$, dd, $J 2$ and $\left.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), 4 \cdot 25(1 \mathrm{H}, \mathrm{d}, J$ $16 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \cdot \mathrm{CH}=\mathrm{CH})$, and $3.64(1 \mathrm{H}, \mathrm{dt}, J 5$ and 16 Hz ,
$\left.\mathrm{CH}=\mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}\right), m / e 178\left(M^{+}, 31 \%\right)$, $121(32), 119(100)$, 91 (59), 89 (21), 77 (24), 75 (37), 74 (21), and 65 (45).

We thank the University of Dacca, Bangladesh, for a scholarship (to M. A.), I.C.I. for a fellowship (to M. T. W. H.), the S.R.C. for a studentship (to G. C. B.) and research grant support, and Mr. J. W. Keeping for the mycological work.
[4/504 Received, 14ih March, 1974]

[^0]: ${ }^{1}$ Part XLII, M. T. W. Hearn, Sir Ewart R. H. Jones, M. G. Fellatt, V. Thaller, and J. L. Turner, J.C.S. Perkin I, 1973, 2785.

 2 A more detailed account of part of the work described in this paper is in the D.Phil. Thesis of G. C. Barley, Oxford, 1971.
 ${ }^{3}$ Sir Ewart R. H. Jones, G. Lowe, and P. V. R. Shannon, J. Chom. Soc. (C), 1966, 1;39.

[^1]: 8 E. J. Corey and R. A. Ruden, Tetrahedron Letters, 1973, 1495.
 ${ }^{9}$ A. G. Fallis, M. T. W. Hearn, Sir Ewart R. H. Jones, V. Thaller, and J. L. Turner, J.C.S. Perkin I, 1973, 743.

[^2]: ${ }^{10}$ D. Biquard, Ann. Chim. (France), 1933, 20, 97.

[^3]: ${ }^{11}$ D. Biquard, Ann. Chim. (France), 1933, 20, 153. For allocation of configuration $c f$. ' Beilsteins Handbuch der Kohlenstoffverbindungen,' 4 th edn., 3 rd supplement, vol. 10 , SpringerVerlag, Berlin-Heidelberg-New York, 1971, p. 556.

[^4]: ${ }^{15}$ H. O. L. Fischer and E. Baer, Helv. Chim. Acta, 1934, 17.

[^5]: ${ }^{16}$ T. Herbertz, Chem. Ber., 1952, 85, 475.
 ${ }^{17}$ G. Eglinton and M. C. Whiting, J. Chem. Soc., 1953, 3052.

